STree
Release 1.2.1

Ricardo Montanana Gomez

Aug 02, 2021

1 STree

1.1 License

2 Install

2.1 Tests

3 Hyperparameters

4 Examples

4.1 Notebooks

4.2 Sample Code

5 APl index

51 Stree e
5.2 Siterator
53 Snode
54 Splitter

Python Module Index
Index

CONTENTS:

CHAPTER
ONE

STREE

Oblique Tree classifier based on SVM nodes. The nodes are built and splitted with sklearn SVC models. Stree is a
sklearn estimator and can be integrated in pipelines, grid searches, etc.

1.1 License

STree is MIT licensed

https://app.codeship.com/projects/399170
https://codecov.io/gh/doctorado-ml/stree
https://www.codacy.com/gh/Doctorado-ML/STree?utm_source=github.com&utm_medium=referral&utm_content=Doctorado-ML/STree&utm_campaign=Badge_Grade
https://lgtm.com/projects/g/Doctorado-ML/STree/context:python
https://github.com/doctorado-ml/stree/blob/master/LICENSE

STree, Release 1.2.1

2 Chapter 1. STree

CHAPTER
TWO

INSTALL

The main stable release
pip install stree
or the last development branch

pip install git+https://github.com/doctorado-ml/stree

2.1 Tests

python -m unittest -v stree.tests

STree, Release 1.2.1

4 Chapter 2. Install

STree, Release 1.2.1

CHAPTER
THREE

HYPERPARAMETERS

Hy- | Type/ValuBs- | Meaning
per- fault
pa-
ram-
e-
ter
* 1 C <float> | 1.0 | Regularization parameter. The strength of the regularization is inversely proportional
to C. Must be strictly positive.
* | ker- | {“lib- lin- | Specifies the kernel type to be used in the algorithm. It must be one of ‘liblinear’,
nel | linear”, | ear | ‘linear’, ‘poly’ or ‘rbf’. liblinear uses liblinear library and the rest uses libsvm library
“lin- through scikit-learn library
ear”,
“poly”,
“rbf”,
“sig-
moid”}
* | max_|iteint> le5 | Hard limit on iterations within solver, or -1 for no limit.
* | ran- | <int> Nonge| Controls the pseudo random number generation for shuffling the data for probability
dom |state estimates. Ignored when probability is False.Pass an int for reproducible output across
multiple function calls
max_|depult> Nong Specifies the maximum depth of the tree
* | tol | <float> | le- | Tolerance for stopping criterion.
4
* | de- | <int> 3 Degree of the polynomial kernel function (‘poly’). Ignored by all other kernels.
gree
* | gamma{“scale”,| scale| Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’.if gamma="scale’ (default) is passed
“auto”} then it uses 1/ (n_features * X.var()) as value of gamma,if ‘auto’, uses 1/ n_features.
or
<float>
split_criténia im- | Decides (just in case of a multi class classification) which column (class) use to split
purity”, | pu- | the dataset in a node**. max_samples is incompatible with ‘ovo’ multiclass_strategy
“max_sampley”
cri- | {“gini”, | en- | The function to measure the quality of a split (only used if max_features !=
te- | “en- tropy| num_features). Supported criteria are “gini” for the Gini impurity and “entropy” for
rion | tropy”} the information gain.
min_sawaiples_splid The minimum number of samples required to split an internal node. 0 (default) for
any
max_|feaimes None The number of features to consider when looking for the split:If int, then con-
<float> sider max_features features at each split.If float, then max_features is a fraction
or and int(max_features * n_features) features are considered at each split.If “auto”,
{“auto”; then-max_features=sqritn_featurcs) I “sqrt™then-max_featurcs=sqritn_features). I
6 “sqrt”, “log2”, then max_features=log2(n_features).If NoneCinapterS-reHMReparamelers
“log2”}
split-| {“best”, | “ran-| The strategy used to choose the feature set at each node (only used if max_features
ter | “ran- dom’] < num_features). Supported strategies are: “best”: sklearn SelectKBest algorithm is

https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/

STree, Release 1.2.1

* Hyperparameter used by the support vector classifier of every node
** Splitting in a STree node

The decision function is applied to the dataset and distances from samples to hyperplanes are computed in a matrix.
This matrix has as many columns as classes the samples belongs to (if more than two, i.e. multiclass classification) or
1 column if it’s a binary class dataset. In binary classification only one hyperplane is computed and therefore only one
column is needed to store the distances of the samples to it. If three or more classes are present in the dataset we need
as many hyperplanes as classes are there, and therefore one column per hyperplane is needed.

In case of multiclass classification we have to decide which column take into account to make the split, that depends on
hyperparameter split_criteria, if “impurity” is chosen then STree computes information gain of every split candidate
using each column and chooses the one that maximize the information gain, otherwise STree choses the column with
more samples with a predicted class (the column with more positive numbers in it).

Once we have the column to take into account for the split, the algorithm splits samples with positive distances to
hyperplane from the rest.

STree, Release 1.2.1

8 Chapter 3. Hyperparameters

CHAPTER
FOUR

EXAMPLES

4.1 Notebooks

e Benchmark
e Benchmark
* Some features
* Gridsearch

¢ Ensembles

4.2 Sample Code

import time

from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris

from stree import Stree

random_state = 1

X, v = load_iris(return_X_y=True)

Xtrain, Xtest, ytrain, ytest = train_test_split(
X, y, test_size=0.2, random_state=random_state

)

now = time.time()

print("Predicting with max_features=sqrt(n_features)')

clf = Stree(random_state=random_state, max_features="auto")

clf. fit(Xtrain, ytrain)

print(£f"Took {time.time() - now:.2f} seconds to train")

print(clf)

print(f"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}")

print(f"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}")

print("=" * 40)

print("Predicting with max_features=n_features")

clf = Stree(random_state=random_state)

clf.fit(Xtrain, ytrain)

print(£"Took {time.time() - now:.2f} seconds to train")

print(clf)

print(f"Classifier's accuracy (train): {clf.score(Xtrain, ytrain):.4f}")

print(f"Classifier's accuracy (test) : {clf.score(Xtest, ytest):.4f}")

https://mybinder.org/v2/gh/Doctorado-ML/STree/master?urlpath=lab/tree/notebooks/benchmark.ipynb
https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/benchmark.ipynb
https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/features.ipynb
https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/gridsearch.ipynb
https://colab.research.google.com/github/Doctorado-ML/STree/blob/master/notebooks/ensemble.ipynb

STree, Release 1.2.1

10 Chapter 4. Examples

CHAPTER
FIVE

API INDEX

5.1 Stree

class stree.Stree(C: float = 1.0, kernel: str = 'linear', max_iter: int = 100000.0, random_state: Optional[int]
= None, max_depth: Optional[int] = None, tol: float = 0.0001, degree: int = 3,
gamma="'scale’, split_criteria: str = 'impurity’, criterion: str = 'entropy', min_samples_split:
int = 0, max_features=None, splitter: str = random’, multiclass_strategy: str = 'ovo’,
normalize: bool = False)
Bases: sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin

Estimator that is based on binary trees of svm nodes can deal with sample_weights in predict, used in boosting
sklearn methods inheriting from BaseEstimator implements get_params and set_params methods inheriting from
ClassifierMixin implement the attribute _estimator_type with “classifier” as value

_build_clf(O
Build the right classifier for the node

_initialize_max_features() — int

_more_tags() — dict
Required by sklearn to supply features of the classifier make mandatory the labels array

Returns the tag required
Return type dict

static _reorder_results(y: numpy.array, indices: numpy.array) — numpy.array
Reorder an array based on the array of indices passed

y [np.array] data untidy

indices [np.array] indices used to set order
np.array array y ordered

_train(X: numpy.ndarray, y: numpy.ndarray, sample_weight: numpy.ndarray, depth: int, title: str) —
Optional[stree.Splitter.Snode]
Recursive function to split the original dataset into predictor nodes (leaves)

X [np.ndarray] samples dataset

y [np.ndarray] samples labels

sample_weight [np.ndarray] weight of samples. Rescale C per sample.
depth [int] actual depth in the tree

title [str] description of the node

11

STree, Release 1.2.1

Optional[Snode] binary tree

fit (X: numpy.ndarray, y: numpy.ndarray, sample_weight: Optional[numpy.array] = None) —
stree.Strees.Stree
Build the tree based on the dataset of samples and its labels

Stree itself to be able to chain actions: fit().predict() ...

ValueError if C<0

ValueError if max_depth < 1

ValueError if all samples have 0 or negative weights
nodes_leaves() — tuple

Compute the number of nodes and leaves in the built tree

[tuple] tuple with the number of nodes and the number of leaves

predict (X: numpy.array) — numpy.array
Predict labels for each sample in dataset passed

X [np.array] dataset of samples
np.array array of labels

ValueError if dataset with inconsistent number of features

NotFittedError if model is not fitted

5.2 Siterator

Oblique decision tree classifier based on SVM nodes Splitter class

class Splitter.Siterator (tree: Splitter.Snode)
Bases: object

Stree preorder iterator

_push(node: Splitter.Snode)

5.3 Snode

Oblique decision tree classifier based on SVM nodes Splitter class

class Splitter.Snode(clf: sklearn.svm._classes.SVC, X: numpy.ndarray, y: numpy.ndarray, features:
numpy.array, impurity: float, title: str, weight: Optional[numpy.ndarray] = None, scaler:
Optional[sklearn.preprocessing._data.StandardScaler] = None)
Bases: object

Nodes of the tree that keeps the svm classifier and if testing the dataset assigned to it
classmethod copy (node: Splitter.Snode) — Splitter.Snode

get_classifier() — sklearn.svm._classes.SVC

get_down() — Splitter.Snode

get_features() — numpy.array

12 Chapter 5. API index

STree, Release 1.2.1

get_impurity() — float
get_partition_column() — int
get_title() — str

get_up() — Splitter.Snode
is_leaf() — bool

make_predictor()
Compute the class of the predictor and its belief based on the subdataset of the node only if it is a leaf

set_classifier(clf)

set_down (son)

set_features (features)
set_impurity (impurity)
set_partition_column(col: int)
set_title(zitle)

set_up(son)

5.4 Splitter

Oblique decision tree classifier based on SVM nodes Splitter class

class Splitter.Splitter(clf: Optionallskiearn.svm._classes.SVC] = None, criterion: Optional[str] = None,
feature_select: Optional[str] = None, criteria: Optional[str] = None,
min_samples_split: Optional[int] = None, random_state=None, normalize=False)
Bases: object

_distances(node: Splitter.Snode, data: numpy.ndarray) — numpy.array
Compute distances of the samples to the hyperplane of the node

node [Snode] node containing the svm classifier
data [np.ndarray] samples to compute distance to hyperplane

np.array array of shape (m, nc) with the distances of every sample to the hyperplane of every class. nc =
of classes

static _entropy(y: numpy.array) — float
Compute entropy of a labels set
y [np.array] set of labels
float entropy
static _fs_best (dataset: numpy.array, labels: numpy.array, max_features: int) — tuple
Return the variabes with higher f-score
dataset [np.array] array of samples
labels [np.array] labels of the dataset

max_features [int] number of features of the subspace (< number of features in dataset)

5.4. Splitter 13

STree, Release 1.2.1

tuple indices of the features selected

static _fs_cfs(dataset: numpy.array, labels: numpy.array, max_features: int) — tuple
Correlattion-based feature selection with max_features limit
dataset [np.array] array of samples
labels [np.array] labels of the dataset
max_features [int] number of features of the subspace (< number of features in dataset)
tuple indices of the features selected

static _fs_£fcbf (dataset: numpy.array, labels: numpy.array, max_features: int) — tuple
Fast Correlation-based Filter algorithm with max_features limit
dataset [np.array] array of samples

labels [np.array] labels of the dataset

max_features [int] number of features of the subspace (< number of features in dataset)
tuple indices of the features selected

static _fs_mutual (dataset: numpy.array, labels: numpy.array, max_features: int) — tuple
Return the best features with mutual information with labels
dataset [np.array] array of samples
labels [np.array] labels of the dataset
max_features [int] number of features of the subspace (< number of features in dataset)
tuple indices of the features selected

_fs_random(dataset: numpy.array, labels: numpy.array, max_features: int) — tuple
Return the best of five random feature set combinations
dataset [np.array] array of samples
labels [np.array] labels of the dataset

max_features [int] number of features of the subspace (< number of features in dataset)
tuple indices of the features selected

static _generate_spaces(features: int, max_features: int) — list
Generate at most 5 feature random combinations

features [int] number of features in each combination

max_features [int] number of features in dataset
list list with up to 5 combination of features randomly selected

_get_subspaces_set (dataset: numpy.array, labels: numpy.array, max_features: int) — tuple
Compute the indices of the features selected by splitter depending on the self._feature_select hyper param-
eter

dataset [np.array] array of samples

labels [np.array] labels of the dataset

14 Chapter 5. API index

STree, Release 1.2.1

max_features [int] number of features of the subspace (<= number of features in dataset)
tuple indices of the features selected

static _gini(y: numpy.array) — float

_impurity(data: numpy.array, y: numpy.array) — numpy.array
return column of dataset to be taken into account to split dataset

data [np.array] distances to hyper plane of every class

y [np.array] vector of labels (classes)

np.array column of dataset to be taken into account to split dataset
static _max_samples(data: numpy.array, y: numpy.array) — numpy.array

return column of dataset to be taken into account to split dataset

data [np.array] distances to hyper plane of every class

y [np.array] column of dataset to be taken into account to split dataset
np.array column of dataset to be taken into account to split dataset
_select_best_set (dataset: numpy.array, labels: numpy.array, features_sets: list) — list
Return the best set of features among feature_sets, the criterion is the information gain
dataset [np.array] array of samples (# samples, # features)
labels [np.array] array of labels
features_sets [list] list of features sets to check
list best feature set
get_subspace (dataset: numpy.array, labels: numpy.array, max_features: int) — tuple
Re3turn a subspace of the selected dataset of max_features length. Depending on hyperparameter
dataset [np.array] array of samples (# samples, # features)
labels [np.array] labels of the dataset
max_features [int] number of features to form the subspace
tuple tuple with the dataset with only the features selected and the indices of the features selected
information_gain(labels: numpy.array, labels_up: numpy.array, labels_dn: numpy.array) — float
Compute information gain of a split candidate
labels [np.array] labels of the dataset
labels_up [np.array] labels of one side

labels_dn [np.array] labels on the other side
float information gain
part (origin: numpy.array) — list

Split an array in two based on indices (self._up) and its complement partition has to be called first to
establish up indices

5.4. Splitter 15

STree, Release 1.2.1

origin [np.array] dataset to split
list list with two splits of the array

partition(samples: numpy.array, node: Splitter.Snode, train: bool)
Set the criteria to split arrays. Compute the indices of the samples that should go to one side of the tree

(up)

samples [np.array] array of samples (# samples, # features)

node [Snode] Node of the tree where partition is going to be made

train [bool] Train time - True / Test time - False
partition_impurity(y: numpy.array) — numpy.array

* genindex

16 Chapter 5. API index

PYTHON MODULE INDEX

S

Splitter, 13
stree, 11

17

STree, Release 1.2.1

18 Python Module Index

Symbols

_build_cl£f(Q) (stree.Stree method), 11
_distances() (Splitter.Splitter method), 13
_entropy () (Splitter.Splitter static method), 13
_fs_best () (Splitter.Splitter static method), 13
_fs_cfs() (Splitter.Splitter static method), 14
fs£fcbf () (Splitter.Splitter static method), 14
_fs_mutual Q) (Splitter.Splitter static method), 14
_fs_random() (Splitter.Splitter method), 14
_generate_spaces() (Splitter.Splitter static method),
14
_get_subspaces_set () (Splitter.Splitter method), 14
_9ini Q) (Splitter.Splitter static method), 15
_impurity Q) (Splitter.Splitter method), 15
_initialize_max_features() (stree.Stree method),
11
_max_samples () (Splitter.Splitter static method), 15
_more_tags () (stree.Stree method), 11
_push(Q) (Splitter.Siterator method), 12
_reorder_results() (stree.Stree static method), 11
_select_best_set () (Splitter.Splitter method), 15
_train() (stree.Stree method), 11

C

copy Q) (Splitter.Snode class method), 12

F

fit) (stree.Stree method), 12

G

get_classifier() (Splitter.Snode method), 12
get_down() (Splitter.Snode method), 12
get_features() (Splitter.Snode method), 12
get_impurity () (Splitter.Snode method), 13
get_partition_column() (Splitter.Snode method), 13
get_subspace() (Splitter.Splitter method), 15
get_title(Q) (Splitter.Snode method), 13

get_up Q) (Splitter.Snode method), 13

information_gain() (Splitter.Splitter method), 15

INDEX

is_leaf() (Splitter.Snode method), 13

M

make_predictor () (Splitter.Snode method), 13
module
Splitter, 12, 13

stree, 11
N
nodes_leaves() (stree.Stree method), 12
P

part Q) (Splitter.Splitter method), 15

partition() (Splitter.Splitter method), 16
partition_impurity () (Splitter.Splitter method), 16
predict () (stree.Stree method), 12

S

set_classifier () (Splitter.Snode method), 13
set_down () (Splitter.Snode method), 13
set_features() (Splitter.Snode method), 13
set_impurity() (Splitter.Snode method), 13
set_partition_column() (Splitter.Snode method), 13
set_title() (Splitter.Snode method), 13
set_up () (Splitter.Snode method), 13
Siterator (class in Splitter), 12
Snode (class in Splitter), 12
Splitter

module, 12, 13
Splitter (class in Splitter), 13
stree

module, 11
Stree (class in stree), 11

19

	STree
	License

	Install
	Tests

	Hyperparameters
	Examples
	Notebooks
	Sample Code

	API index
	Stree
	Siterator
	Snode
	Splitter

	Python Module Index
	Index

